Saturation of Regularization Methods in Hilbert Spaces
نویسنده
چکیده
We prove saturation of methods for solving ill-posed problems in Hilbert spaces for a wide class regularization methods. It turns out, that under a certain convexity assumption, saturation is necessary. We provide easy to verify assumptions, which allow to calculate the rate, at which saturation occurs.
منابع مشابه
Saturation spaces for regularization methods in inverse problems
The aim of this article is to characterize the saturation spaces that appear in inverse problems. Such spaces are defined for a regularization method and the rate of convergence of the estimation part of the inverse problem depends on their definition. Here we prove that it is possible to define these spaces as regularity spaces, independent of the choice of the approximation method. Moreover, ...
متن کاملOn Converse and Saturation Results for Tikhonov Regularization of Linear Ill-posed Problems
In this paper we prove some new converse and saturation results for Tikhonov regularization of linear ill-posed problems Tx = y, where T is a linear operator between two Hilbert spaces.
متن کاملLavrentiev regularization of accretive problems
This paper deals with Lavrentiev regularization for solving linear ill-posed problems, mostly with respect to accretive operators on Hilbert spaces. We present converse and saturation results which are an important part in regularization theory. As a byproduct we obtain a new result on the quasi-optimality of a posteriori parameter choices. Results in this paper are formulated in Banach spaces ...
متن کاملNewton-type regularization methods for nonlinear inverse problems
Inverse problems arise whenever one searches for unknown causes based on observation of their effects. Such problems are usually ill-posed in the sense that their solutions do not depend continuously on the data. In practical applications, one never has the exact data; instead only noisy data are available due to errors in the measurements. Thus, the development of stable methods for solving in...
متن کاملEquilibrium Programming in Hilbert Spaces
Several methods for solving systems of equilibrium problems in Hilbert spaces – and for finding best approximations thereof – are presented and their convergence properties are established. The proposed methods include proximal-like block-iterative algorithms for general systems, as well as regularization and splitting algorithms for single equilibrium problems. The problem of constructing appr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003